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of aminoethoxyvinylglycine-mediated ripening and cold storage on the 
microbiome of ‘NY1’ apples 

Connor Lane a, Yosef Al Shoffe a, Peter Schafran b, Fay-Wei Li b,c, Jenny Kao-Kniffin a, 
Christopher B. Watkins a,* 

a Horticulture Section, School of Integrative Plant Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA 
b Boyce Thompson Institute, 533 Tower Rd, Ithaca, NY 14853, USA 
c Plant Biology Section, School of Integrative Plant Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA   

A R T I C L E  I N F O   

Keywords: 
Malus x domestica 
Ethylene 
Plant growth regulators 
AVG 
Fungi 
Bacteria 

A B S T R A C T   

Understanding community-level microbial dynamics provides more holistic insight into the nature of pathogen 
infection and biocontrol in fruits and vegetables. We investigated the impact of preharvest sprays of amino-
ethoxyvinylglycine (AVG, 0.25 g L− 1), an inhibitor of ethylene production of fruit, to assess the association 
between ethylene-mediated ripening and the microbiome at harvest and during storage. ‘NY1’ (Snapdragon®) 
apples were sprayed on the tree two weeks before first harvest and the microbiome of the fruit was assessed at 
harvest and at one-week intervals across four weeks. Fruit from harvests 1 and 4 were stored in air at 3 ◦C for up 
to 6 months. The bacterial communities changed over harvest time while fungal communities were affected by 
AVG treatment. In addition, both harvest time and AVG, as well as storage time, were associated with bacterial 
and fungal variation after 2–6 months of storage. Postharvest fungal microbiomes showed consistent responses to 
variations in fruit maturation, with the microbial communities of AVG-treated apples being similar to those of 
early harvested apples. Fungal microbiome variation was linked to the soluble solids concentration and IAD, 
revealing further links between microbial dynamics and apple quality. Bacterial shifts that occurred from harvest 
to 6 months of storage were characterized by metagenome changes that resulted in a lower abundance of biofilm 
formation pathways after cold storage, which may limit the ability of these bacterial communities to block 
colonization by fungal pathogens. These findings advance our understanding of how the microbiome is con-
nected to fruit quality and functional metagenomics related to biocontrol.   

1. Introduction 

Fungal decay can cause serious losses of horticultural produce in 
both developing countries and in industrial supply chains of more 
developed countries (Ali et al., 2021; Argenta et al., 2021). Fungicides 
can be used to treat postharvest pathogens of fruit and vegetables, but 
increasing fungicide resistance combined with the difficulty in discov-
ering new modes of action and increasing regulatory concerns suggest 
the need for a wider variety of approaches in controlling postharvest 
decay (Spadaro and Droby, 2016). A potential supplement or alternative 
to conventional fungicides is biocontrol, which has been researched 
since the mid-1980s (Wilson and Pusey, 1985). However, biocontrol 
products have made limited impact on markets due to production issues 

and inconsistent performance (Droby et al., 2016; Dukare et al., 2019). A 
potential way to improve biocontrol efficacy and bolster pathogen 
resistance is to utilize the native microbiota of crops that are theorized to 
be intertwined with nearly all aspects of host physiology (Wisniewski 
and Droby, 2019). Therefore, a better understanding of postharvest 
microbial ecology may pave the way to more effective ways to combat 
fungal decay. 

Apples are an ideal model system for studying postharvest micro-
biomes due to long storage times and the presence of a core set of mi-
croorganisms that remains present regardless of global geography 
(Abdelfattah et al., 2021). Previous work has found that postharvest 
apple microbiome composition varies based on conventional vs. organic 
management (Abdelfattah et al., 2021, 2016; Bartuv et al., 2023; Leff 
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and Fierer, 2013; Shen et al., 2022; Vepštaitė-Monstavičė et al., 2018; 
Wassermann et al., 2019b), host genotype (Abdelfattah et al., 2022; Liu 
et al., 2018; Zhimo et al., 2022), biocontrol application (Biasi et al., 
2021; Shi et al., 2022), postharvest treatments such as waxing and hot 
water (Abdelfattah et al., 2020; Bösch et al., 2021; Shen et al., 2018; 
Wassermann et al., 2019a), time spent in cold storage (Abdelfattah et al., 
2020; Biasi et al., 2021; Bösch et al., 2021; Lane et al., 2023; Shen et al., 
2018; Wassermann et al., 2019a; Zhimo et al., 2022), and storage con-
ditions such as low oxygen controlled atmosphere storage (Bösch et al., 
2021; Lane et al., 2023). Together, this body of work suggests that apple 
microbiomes are malleable, but that there is a core microbiome 
consistent enough that discovered microbial community dynamics are 
likely to apply beyond limited geographic contexts. 

When attempting to connect the role of the apple microbiome to fruit 
physiology, the connection between the microbiome and ethylene is less 
understood. Apples are a climacteric fruit, producing ethylene as a 
critical component of the ripening process (Johnston et al., 2009). 
Ethylene production can be suppressed with plant growth regulators 
(PGRs) such as aminoethoxyvinylglycine (AVG; commercial formulation 
ReTain™), which inhibits the activity of 1-aminocyclopropane-1-car-
boxylate (ACC) synthase (ACS) by binding to pyridoxal-5’-phosphate 
and therefore suppresses the ability of ACS to catalyze the conversion of 
methionine to ACC oxidase (Boller et al., 1979). Another PGR is 1-meth-
ylcycopropene (1-MCP; commercial formulation Harvista®), which in-
hibits ethylene perception (Sisler, 2006). In addition to its impacts on 
ripening and senescence, ethylene is known to affect plant defense 
signaling (Adie et al., 2007), as well as the signaling of fungal pathogens 
and bacteria (Gamalero and Glick, 2015; Ravanbakhsh et al., 2018; van 
Loon et al., 2006), suggesting a link to the microbiome. Our previous 
work found that preharvest AVG treatments impacted bacterial but not 
fungal communities (Lane et al., 2023), and other work has linked 
ethylene-mediated ripening to the microbiome of pear and kiwifruit (Xie 
et al., 2021; Zhang et al., 2021). However, it is not known how these 
dynamics are affected by differences of ethylene production and fruit 
quality across harvest time, nor what functional changes are associated 
with taxonomic microbiome shifts. 

In this study, we investigated the role of preharvest AVG treatment, 
harvest time, and storage time on the apple microbiome at harvest and 
during storage. We hypothesized that 1. AVG treatment would shift 
microbiomes by mediating plant-microbe interactions; 2. The micro-
biome would shift over harvest time due to microbes responding to 
maturation and ripening processes, but these effects would be affected 
by AVG; and 3. Microbiomes would shift throughout storage, but that 
differences would remain between harvest times due to different at 
harvest microbial communities and host physiology. We aimed to link 
these potential changes to fruit quality, and in microbial metagenomes 
to uncover functional differences associated with taxonomic ones. Our 
previous work (Lane et al., 2023) utilized metagenome prediction from 
amplicon sequencing to assess this question, and in this study we utilized 
shotgun metagenomics to obtain a more cohesive and accurate picture of 
the metagenome. Functional genomics with shotgun sequencing for 
apple microbiomes has largely been limited to data mining for biocon-
trol and antimicrobial genes (Angeli et al., 2019; Wassermann et al., 
2022), with limited use to address treatments such as conventional vs. 
organic management (Bartuv et al., 2023). Our objective was to use 
metagenomic analysis to provide a key step towards linking microbiome 
shifts with functional outcomes. 

2. Materials and methods 

2.1. Field treatments, quality assessment, and storage 

‘NY1’ apples grown at the Cornell Orchards in Ithaca, NY (co-
ordinates 42.45018807, − 76.462011341) were used for this experi-
ment. Eight single tree replicates for untreated and AVG treatment were 
used. AVG (ReTain®, Valent BioScience Corporation, Libertyville, IL) 

was sprayed at a rate of 0.25 g L− 1 on the trees 14 d before the initial 
harvest, with the control treatment receiving water instead. The first 
harvest took place on September 16, 2021, with three subsequent har-
vests at one-week intervals. Each replicate consisted of 5 fruit. Nitrile 
gloves were used for handling of the fruit until the microbiome was 
sampled to prevent contamination. 

The internal ethylene concentration (IEC) of each fruit was sampled 
on the day of harvest, being sampled before the microbiome so that the 
wash sampling method described below did not interfere with the gas 
dynamics in the apple core. Firmness, delta absorbance (IAD), soluble 
solids concentration (SSC), titratable acidity (TA), and the starch pattern 
index (SPI) were assessed the day after microbiome sampling due to the 
destructive nature of this sampling. All procedures were carried out as 
previously described (Al Shoffe et al., 2021). A total of 64 samples (2 
treatments x 4 harvest times x 8 replicates) were assessed for quality and 
microbiome sampling at each harvest time. 

Fruit from the first and fourth harvests were stored in air at 3 ◦C, and 
fruit were assessed at 2, 4, and 6 months of storage. The first and fourth 
harvests (H1 and H4) were chosen to assess the range of maturity from 
least to most mature. At each time point, IECs were measured 24 h after 
removal from storage, the microbiome was sampled, and then the 
quality factors other than the SPI were measured. Apples that showed 
signs of decay after 6 months of storage were not sampled for the 
microbiome or for quality assessment. This included two entire repli-
cates, leaving a total of 94 samples assessed throughout storage (2 
chemical treatments x 2 harvest times x 3 storage times x 8 replicates =
96), for a total of 158 total samples (64 at harvest + 96 postharvest – 2 
decayed) used for quality assessment and microbiome sampling. 

2.2. Microbiome sampling and sequencing 

Microbiome sampling and DNA extraction was performed as previ-
ously described (Lane et al., 2023). Briefly, five apples were placed in a 
0.05 M phosphate buffer solution with 0.1 % Tween 80 and were soni-
cated and placed in a rotary shaker for 20 minutes each before being 
filtered through a 0.22 μm filter paper for microbiome collection and 
eventual extraction via Qiagen DNeasy® PowerSoil® DNA extraction kit 
(Beverly, MA). However, unlike our previous study, we did not pool 
DNA from multiple replicates prior to sequencing. 

At harvest and postharvest samples were sequenced in separate fa-
cilities, resulting in different PCR and library preparation steps. At 
harvest samples were processed as previously described with sequencing 
done through the Cornell sequencing facility (Bray et al., 2019), with the 
alteration that 5 μM PNA clamps (5′-GGCAAGTGTTCTTCGGA-3′ and 
5′-GGCTCAACCCTGGACAG-3′) were added during 16 S PCR to block 
amplification of plant plastid and mitochondria 16 S (Lundberg et al., 
2013). Postharvest samples were processed as previously described with 
sequencing done through Novogene (Lane et al., 2023). In both cases, 
the V3 and V4 subunits of the 16 S were used for bacteria, and the ITS2 
gene was used for fungi. 

Two of the eight replicates for AVG and control were selected for 
shotgun metagenomic sequencing from the same extracted microbial 
DNA. Samples were selected from harvests 1 and 4 at 0 and 6 months for 
sequencing, for a total of 16 samples (2 preharvest treatments x 2 har-
vests x 2 storage times x 2 replicates). Samples were shipped to Novo-
gene (Sacramento, CA), who performed library preparation and 
sequencing. A total amount of 1 μg DNA per sample was used as input 
material for the DNA sample preparations. Sequencing libraries were 
generated using NEBNext® Ultra™II DNA Library Prep Kit for Illumina 
(NEB, USA) following manufacturer’s recommendations and index 
codes were added to attribute sequences to each sample. Briefly, the 
DNA sample was fragmented by sonication to a size of 350 bp, then DNA 
fragments were end-polished, A-tailed, and ligated with the full-length 
adaptor for Illumina sequencing with further PCR amplification. 
Finally, PCR products were purified (AMPure XP system) and libraries 
were analyzed for size distribution by Agilent2100 Bioanalyzer and 
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quantified using Real Time PCR. Quantified libraries were pooled and 
sequenced on Illumina Illumina NovaSeq 6000 platform, according to 
effective library concentration and data amount required. 

2.3. Sequence processing and statistics 

Amplicon sequence analysis was performed in QIIME2 (Bolyen et al., 
2019). Due to different sequence protocols, the at harvest and post-
harvest amplicon sequencing datasets were analyzed separately. First, 
sequences were imported, merged, and filtered through DADA2 (Call-
ahan et al., 2016). Default parameters were used for the postharvest 
samples, while in the at harvest samples reads were trimmed prior to 
merging due to low quality. The resulting amplicon sequencing variants 
(ASVs) were clustered de novo into operational taxonomic units (OTUs) 
based on 97 % similarity, followed by removal of chimeric sequences 
using uchime (Edgar et al., 2011). OTUs were then assigned taxonomy 
based on a Naive Bayes Classifier trained on the UNITE_ver8_dynamic 
database for ITS and the SILVA 138 99% database for 16 S (Abarenkov 
et al., 2010; Quast et al., 2012). Chloroplast and mitochondrial se-
quences were then removed from the 16 S dataset. Finally, OTU abun-
dance and taxonomy tables were exported along with representative 
sequences for subsequent analysis in R version 4.1.2 (R core team, 
2021). 

For shotgun metagenomic sequence analysis, reads were first filtered 
and trimmed using Fastp (Chen et al., 2018). These reads were then 
assembled into a separate metagenome for each sample using Meta-
SPADES (Nurk et al., 2017). Assembly contigs were taxonomically 
classified using Kraken2 (Wood et al., 2019), and assemblies were 
divided into bacterial and fungal assemblies with Kraken tools. Meta-
genome functional annotation was then performed with emapper-2.1.3 
using the eggnog 5.0 database (Huerta-Cepas et al., 2019, 2017), using 
Prodigal for open reading frame prediction in bacteria and MMseqs2 for 
sequence searches in bacteria and fungi (Hyatt et al., 2010; Steinegger 
and Söding, 2017). KEGG orthologs (KOs) and pathway abundances 
were extracted from the output and assembly coverage estimates for 
downstream analysis in R (Kanehisa and Goto, 2000). 

Table 1 summarizes the sequencing statistics. To maximize the data 
obtained from each sample, rarefication was not performed. 

2.4. Statistical analyses 

The association between IECs and harvest time, storage time, and 
AVG application was assessed with an ANOVA, with p < 0.05 being used 
as the cutoff for significance. The proportion of each sample with apples 
showing signs of rot, mold, or decay after 6 months was assessed in the 
same manner across harvest time and storage time. 

As with sequence analysis, the at harvest and postharvest amplicon 
sequencing datasets were analyzed separately due to different 
sequencing protocols used. Effects of AVG treatment, harvest time, and 
storage time (for postharvest dataset) on microbial OTU composition 
were assessed by performing a Permutational Multivariate Analysis of 
Variance (PERMANOVA) using 999 permutations (Anderson, 2014) 
with a p < 0.05 being used as the cutoff for significance. This test was 

performed on a Bray-Curtis distance matrix (obtained using the vegan 
package) of the OTU abundance table (Beals, 1984; Dixon, 2003). The 
distance matrix was also visualized with a Principal Coordinate Analysis 
(PCoA). Microbiomes were then compared against treatments and 
quality metrics using a Distance-based Redundancy Analysis (dbRDA), 
with certain parameters excluded to keep the variance inflation factor 
lower than 5. The significance of dbRDA parameters was assessed using 
a permutational ANOVA using 999 permutations. The Shannon diversity 
was calculated from the same OTU table and compared across treat-
ment, harvest time, and storage time using an ANOVA. The R package 
phyloseq was used to create a genera table that was then assessed by the 
Maaslin2 package to determine genera that were significantly different 
across treatments (Mallick et al., 2021; McMurdie and Holmes, 2013). A 
false discovery rate cutoff of 0.05 with the Benjamini-Hochberg method 
was used to determine significance (Benjamini and Hochberg, 1995). 

A similar statistical analysis was performed on the shotgun meta-
genomics KEGG output, with kos being used for the PERMANOVA and 
PCoA due to their specificity. When assessing which genomic features 
significantly changed across predictors of metagenome composition, 
whole pathways were used in place of KOs to establish clearer connec-
tions with biological processes of potential interest. When doing this 
multiple testing, pathways with less than 0.001 % abundance were 
excluded. 

3. Results 

3.1. Internal ethylene concentrations and postharvest decay 

AVG treatment, harvest time and storage time were highly signifi-
cant predictors of IEC with numerous interaction effects between factors 
(Table 2). In particular, IEC through storage time showed different 
patterns depending on harvest and AVG treatment, decreasing over time 
in the harvest 4 control, increasing in the harvest 1 control and AVG, and 
remaining consistently low in the harvest 4 AVG treatment (Fig. 1). 
Overall, IEC was lower in AVG-treated fruit, and other patterns it 
showed relied on a combination of factors. 

Disease incidence was assessed after 6 months by looking for clear 
visual signs of pathogen presence such as areas of rot or visible mold. 
The proportion of disease incidence in apples was higher in harvest 4 
(48 %) than harvest 1 (11 %), with no other significant effects being 
found (Table 2). No signs of pathogen activity were observed at earlier 
time points. 

3.2. Microbiome composition and diversity 

At harvest, bacterial microbiomes were associated with harvest time, 
while fungal microbiomes were associated with AVG application 
(Table 2). Notably, the bacterial microbiomes shifted in a consistent 
direction throughout the harvest season (Fig. 2A), while fungal micro-
biomes of AVG-treated fruit showed little to no overlap on an ordination 
compared to control (Fig. 2B). The interaction between harvest time and 
AVG was not significant for bacteria or fungi. 

In contrast, AVG treatment, harvest time and storage time were all 

Table 1 
Sequencing statistics for different datasets including average raw reads per sample, filtered reads and ASVs after DADA2 (or Fastp for shotgun metagenomics), and 
number of final OTUs after 97 % clustering and subsequent chimera removal. The final column depicts the number of samples with a final OTU count of fewer than 
1000, which were removed from statistical analyses.   

Average raw read count per 
sample 

Average filtered read count per 
sample 

Number of 
ASVs 

Number of 
OTUs 

Number of samples removed from 
analysis 

At Harvest 16 S 28,028 7641 5648 646  4 
At Harvest ITS 30,549 15,188 1235 718  3 
Postharvest 16 S 96,500 79,340 7464 2742  0 
Postharvest ITS 88,716 60,584 3070 884  0 
Shotgun 

Metagenomics 
31,227,287 30,991,046 - -  0  

C. Lane et al.                                                                                                                                                                                                                                    



Postharvest Biology and Technology 213 (2024) 112969

4

associated with postharvest bacterial and fungal composition (Table 2). 
The bacteria showed clear clustering by storage time (Fig. 2C), while 
fungi showed the clearest clustering by harvest time (Fig. 2D). Addi-
tionally, bacterial microbiomes depend on the interaction between 
harvest time and storage time (Table 2), and it can be observed that 
bacterial microbiomes separate by harvest more clearly at early stages of 
storage than late storage (Fig. 2C). This suggests that the effects of 
harvest time on bacterial microbiomes may be less pronounced the 
longer the apples are stored. 

Additionally, postharvest fungal microbiomes covary with quality 
parameters such as IAD and SSC (Fig. 3B). Notably, AVG applications 
along with high IAD and SSC values were associated with different 
microbiomes than long storage and late harvest, as determined by the 
primary axis of variation. Similar visual patterns were shown in bacteria 
(Fig. 3 A), but the only significant factor was storage time. No significant 
effects of dbRDA parameters were found on at harvest bacterial or fungal 

microbiomes. 
The Shannon Diversity remained largely steady regardless of most 

factors, with the only observed association being between postharvest 
fungal diversity and harvest time (Table 2). Within this dataset, micro-
biomes of late harvested apples had higher diversity than microbiomes 
of early harvested apples (Fig. 4D). However, significant interactions 
between harvest time and AVG as well as storage time and AVG high-
light that AVG application may influence fungal diversity in a more 
context-specific manner (Table 2). 

3.3. Microbiome taxonomy 

The most common bacterial genera on apples at harvest were Cur-
tobacterium (26.15 %), Pseudomonas (10.35 %), and Methylobacterium- 
Methylorubrum (9.41 %; Fig. 5A). During storage, however, the most 
common bacterial genera were Curtobacterium (19.24 %), Sphingomonas 
(12.44 %), and Methylobacterium-Methylorubrum (11.69 %; Fig. 5C). 

The abundance of many common bacterial genera depended on 
experimental factors, with storage time being associated with the 
abundance of the largest number of genera. Out of 75 bacterial genera 
identified in the at harvest dataset, 5 increased in relative abundance 
through the harvest season, and 5 decreased. Genera with increased 
relative abundance and over 1 % total abundance were Pseudomonas and 
Bradyrhizobium, and genera with decreased relative abundance and over 
1 % total abundance were Methylobacterium-Methylorubrum, Massilia, 
Sphingomonas, Curtobacterium, and a genus the classifier denoted as 
1174–901–12 (Fig. 5A). For the storage samples, 167 bacterial genera 
were identified. Of these, one had higher relative abundance on the late 
harvested apples compared to early harvested apples while four had 
lower relative abundance, including the common (> 1 % total abun-
dance) Massilia and Bradyrhizobium (Fig. 5C). Thirty eight bacterial 
genera had increased relative abundance at late storage compared to 
early storage (including the common Azorhizobium, Curtobacterium, 
Kineosporia, and Subtercola), while 27 had decreased relative abundance 
(including the common Candidatus Obscuribacter, Caulobacter, Massilia, 
and Sphingomonas). One bacterial genus had higher abundance in AVG- 
treated stored apples than control, while three had decreased abun-
dance. None of these genera had more than 1 % total abundance. 

The most common fungal genera on apples at harvest were Entyloma 
(17.07 %), Vishniacozyma (9.23 %), and Sporobolomyces (8.58 %; 
Fig. 5B), while the most common fungal genera on the postharvest ap-
ples were Aureobasidium (32.00 %), Vishniacozyma (7.91 %), and Enty-
loma (6.52 % Fig. 5D). While it appears striking that Aureobasidium is the 
most common fungal genus in postharvest samples while not reaching 1 
% abundance in the at harvest dataset, this is likely explained by 26.39 

Table 2 
p-values of the associations between treatments (column labels) and responses (row labels). IEC and Shannon Diversity were assessed using an ANOVA, while 
composition and KEGG KOs were assessed using a PERMANOVA. Postharvest and KEGG KO datasets used only harvests 1 and 4, while the KEGG KO dataset also only 
used 0 and 6 months of storage.   

Harvest 
Time 

Storage 
Time 

AVG Harvest Time x Storage 
Time 

Harvest Time x 
AVG 

Storage Time x 
AVG 

Harvest Time x Storage Time x 
AVG 

IEC  <0.001 0.096  <0.001 <0.001  0.368 <0.001 <0.001 
Decay After 6 Months  <0.001 -  0.132 -  0.897 - - 
At Harvest 16 S 

Composition  
<0.001 -  0.589 -  0.948 - - 

At Harvest 16 S Diversity  0.507 -  0.319 -  0.923 - - 
At Harvest ITS 

Composition  
0.002 -  <0.001 -  0.036 - - 

At Harvest ITS Diversity  0.465 -  0.125 -  0.075 - - 
Postharvest 16 S 

Composition  
<0.001 <0.001  0.003 0.022  0.184 0.229 0.875 

Postharvest 16 S Diversity  0.117 0.764  0.837 0.556  0.613 0.807 0.415 
Postharvest ITS 

Composition  
<0.001 <0.001  <0.001 0.061  0.984 0.047 0.677 

Postharvest ITS Diversity  <0.001 0.874  0.33 0.3  0.002 0.03 0.767 
Bacterial KEGG KOs  0.256 <0.001  0.374 0.663  0.443 0.549 0.805 
Fungal KEGG KOs  0.94 0.388  0.093 0.818  0.539 0.855 0.732  

Fig. 1. Internal ethylene concentration by harvest time, storage time, and AVG 
application on day of harvest or 24 hours after removal from storage. Points 
represent the average across up to 40 apples per treatment/time combinations, 
with error bars displaying one standard error from the mean. Table 2 and S1 
provide statistical information for these associations. 
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Fig. 2. Principal Coordinate Analysis of bacterial (A, C, E) and fungal (B, D, F) microbiomes, looking at preharvest OTU composition (A, B), postharvest OTU 
composition (C, D), and metagenomic KEGG ko composition (E, F). Color corresponds to harvest and storage time, while point shape corresponds to AVG application. 
Table 2 gives the p-values for these associations. 
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% of at harvest fungal OTUs being classified into the Aureobasidiaceae 
family and unclassified at the genus level. 

The abundance of several fungal genera also covaried with treatment 
factors, with storage time having the most associations in similar fashion 
to bacteria. Of the 70 fungal genera in the at harvest samples, two had 
increased abundance in AVG-treated apples compared to control while 
four had decreased abundance. The genera with decreased abundance 
included the common (> 1 % total abundance) Golubevia, Spor-
obolomyces, and Articulospora. For the storage dataset, 103 genera were 
identified. Of these, seven had increased abundance in AVG-treated 
apples compared to control (including the common Entyloma), while 
one (the common Golubevia) had decreased abundance. 15 increased in 
abundance over storage time (including the common Bulleromyces, 
Cladosporium, Sarocladium, and Niesslia), while 12 decreased in abun-
dance (including the common Entyloma). 20 had increased abundance in 
late harvested apples compared to early harvested apples (including the 
common Bulleromyces, Cladosporium, Entyloma, and Vishniacozyma), 
while 5 (including the common Alternaria and Sporobolomyces) had 
decreased abundance. 

3.4. Microbiome metagenomics 

Storage time was a predictor of bacterial metagenome KEGG KO 
composition, while no factors were shown to covary with fungal KEGG 
KO composition (Table 2). This is visualized by ordination, where clear 
clustering was observed between at harvest and 6 months storage in 
bacteria (Fig. 2E), but no clear clustering is observed in fungi (Fig. 2F). 

After accounting for multiple testing, we revealed that pathways 
involving antibiotic resistance and biofilm formation had lower relative 
abundance after 6 months of storage compared to at harvest. Out of 302 
classified KEGG pathways, none had increased relative abundance after 
6 months of storage compared to at harvest and 20 had decreased 
relative abundance. Pathways that decreased in abundance had a variety 
of functions. These include synthesis of terpenoids, N-glycans, caroten-
oids, and lipopolysaccharides, as well as the degradation and meta-
bolism of cysteine, methionine, and furfural. In addition, pathways 
antibiotic resistance and biofilm formation had more consistently 
decreased relative abundance after storage. Two of the three pathways 
related to antibiotic resistance, cationic antimicrobial peptide resistance 
and beta-Lactam resistance, were less abundant after 6 months of 

storage, while all three pathways related to biofilm formation had 
decreased abundance (Fig. 6). This does not equate with the abundance 
of the three bacteria listed. Instead, the consistent pattern of biofilm 
formation pathways being less abundant after storage suggests that the 
trend holds broadly true despite differences in the genetics of biofilm 
formation between taxa. 

4. Discussion 

4.1. Microbiome composition is associated with storage time and harvest 
time 

Our work was consistent with previous studies showing that the 
apple microbiome shifts over months of storage (Abdelfattah et al., 
2020; Biasi et al., 2021; Bösch et al., 2021; Lane et al., 2023; Shen et al., 
2018; Wassermann et al., 2019a; Zhimo et al., 2022), with minor dif-
ferences in some of the specifics. Our previous work found no effect of 
storage type and time on the fungal microbiome of ‘Gala’ apples (Lane 
et al., 2023), while we found a strong association in the current study 
(Table 1). This discrepancy could be due to factors such as a different 
cultivar and different postharvest treatments. Other studies have found 
that fungal shifts throughout storage are context-dependent, such as 
observing shifts only in certain parts of the apple (Abdelfattah et al., 
2020). 

Our study showed that bacterial and fungal microbiomes can shift 
over the course of a harvest season, a result that supports a recent 
observation that microbiome shifts throughout apple fruit development 
and maturation (Zhimo et al., 2022). This effect was pronounced in 
bacteria but was not observed in fungi at harvest (Table 1, Fig. 2 A-B), 
similar to previous findings showing larger differences between matu-
ration and harvest periods in bacteria compared to fungi (Zhimo et al., 
2022). In addition, we observed a strong association between fungal 
composition and harvest time, but only after 2 or more months of 
storage (Table 1, Fig. 2D). The trend held true even during early storage, 
suggesting that it may not necessarily be related to spoilage by patho-
gens after long storage. Overall, our hypothesis that microbiome vari-
ation associated with harvest time remains pronounced through storage 
was largely supported by the data, and in the case of fungi we even 
observed effects during storage that were not detected at harvest. 
However, we did observe an interaction effect between harvest time and 

Fig. 3. dbRDA plots of the postharvest bacterial 16 S (A) and fungal (ITS) OTUs (B). Factors colored red are significant (p < 0.05) predictors of microbiome variation, 
while factors colored grey are not. 

C. Lane et al.                                                                                                                                                                                                                                    



Postharvest Biology and Technology 213 (2024) 112969

7

storage time in bacteria (Table 2), which may be due to samples from 
different harvests clustering closer together late in storage (Fig. 2C). 
This suggests that for bacteria, differences in the microbiome due to 
variation in harvest time may not have been maintained throughout 
long periods of storage. 

4.2. Microbiome differences can be linked to postharvest fruit quality 

Our work expanded on previous microbial ecology studies on 
ethylene inhibitors by connecting the effects of AVG on the microbiome 
to ethylene-mediated ripening. Previous work that showed the effect of 
ethylene inhibitors on the microbiomes of climacteric fruit (Lane et al., 
2023; Xie et al., 2021; Zhang et al., 2021), but it proved difficult to 
isolate ripening differences as the cause for those shifts. In accordance 
with our hypothesis, not only was AVG treatment associated with 
microbiome variation in fungi, but the postharvest microbiomes of 

AVG-treated apples also resembled the microbiomes of early harvested 
apples (Fig. 3B). This suggests that the microbiome is linked to the 
physiology of apple ripening rather than an unrelated effect of AVG. In 
addition, those patterns being present in storage but not at harvest 
samples also indicated that microbiome changes across harvest time 
were likely due to host-microbe interactions rather than turnover, and 
that these interactions may take time or require the presence of cold 
storage to induce microbiome shifts. In bacteria we similarly observed 
that AVG treatment only affected the microbiome during storage rather 
than at harvest (Table 2), indicating that microbial responses to host 
ripening may be delayed or mediated by cold storage. Overall, these 
findings constitute an important step towards understanding the rela-
tionship between fruit maturation and ripening with microbial activity. 

In addition to treatment effects on microbiomes, we observed that 
postharvest fungal microbiomes are associated with IAD and SSC 
(Fig. 3B). Apples with high SSC and high IAD (greener) had microbiomes 

Fig. 4. Shannon diversity of bacterial 16 S (A, C) and fungal ITS (B, D) OTUs, at preharvest (A, B) and postharvest (C, D) time points. X points represent the mean for 
each harvest/storage time combination, with error bars being one standard error of the mean. Table 2 shows the p-values for these associations. 
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that are more similar to early harvested, AVG-treated, or short storage 
apples along the primary axis of variation. These findings build on the 
previous literature by revealing that commercially important quality 
indices are associated with microbiomes in addition to treatments. 
Further research may allow the microbiome to be integrated into fruit 
quality management on a practical level. 

4.3. Metagenome analyses show a decline in the abundance of biofilm 
formation pathways throughout cold storage 

Metagenomic markers associated with biofilm formation decreased 
in abundance from harvest to 6 months of cold storage (Fig. 6). The 

trend was consistent across all three taxa that the KEGG database uses 
for biofilm formation characterization, suggesting that the abundance of 
biofilm formation pathways decreases as a whole despite potential dif-
ferences in pathways across taxonomy. The implications of this finding 
are multifaceted, as biofilms promote microbial growth with negative 
implications for food safety (Nathanon, 2003), but can also act as modes 
of biocontrol against colonizing pathogens (Wallace et al., 2018). In fact, 
biofilm formation from the same bacterial strain can be beneficial for 
one crop while pathogenic to another (Giobbe et al., 2007). Neverthe-
less, bacterial biofilm formation has been identified as an important 
biocontrol mechanism (Spadaro and Droby, 2016), and the lowered 
abundance of biofilm formation pathways after cold storage may suggest 

Fig. 5. Abundance of common bacterial (A, C) and fungal (B, D) genera at the at harvest (A, B) and postharvest (C, D) time points derived from the OTU dataset. For 
postharvest time points, control and AVG bars include samples from all harvest and storage times, while other bars include samples from both control and AVG. 
Genera with less than 1% abundance are grouped under “Other.” For bacteria, Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium is shortened to ANP-Rhizobium. 
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that native microbiota have a lessened ability to protect apples from 
fungal pathogens using biofilm formation at that time. 

However, an important caveat of metagenomic interpretation is the 
potential discrepancies between gene abundance and expression, along 
with the possibility that the traits under selection pressure are not part of 
the database searched. Nevertheless, this shotgun metagenomic analysis 
highlights the importance of biofilm pathways, providing a key step in 
linking microbiome shifts with implications for biocontrol. This finding 
opens up opportunities for further research on the biofilm formation of 
native microbiota on the fruit surface. 

5. Conclusion 

In accordance with our hypotheses, we found that AVG treatment, 
harvest time and storage time impacted the microbiome. In particular, 
the effect of AVG on slowing maturation and ripening was mirrored by 
shifting postharvest fungal microbiomes to be more similar to apples 
found in earlier harvests. Indeed, the postharvest fungal microbiome 
was also associated with the harvest index of background color (IAD) and 
the quality index SSC, providing a link between fruit physiology and the 
microbiome. Notably, many of these effects were observed during 
storage rather than at harvest, suggesting that microbiome responses to 
fruit ripening physiology may be delayed or mediated by cold storage. In 
addition, we were able to link certain microbiome shifts to functional 
metagenomic changes, such as a reduced abundance in biofilm forma-
tion pathways in bacteria after 6 months of cold storage compared to 
those at harvest. These results build on previous postharvest microbiome 
research by connecting the microbiome to ripening physiology and 
functional biocontrol implications through the metagenomic abundance 
of biofilm formation pathways. 
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